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Application of quasi Monte Carlo
polymerization re-sampling particle
filter algorithm in airborne passive

location1

Hongping Pu2, Kaiyu Qin2

Abstract. Aiming at the problems that the the performance of the airborne passive location
filter is poor and the noise is small, a method of Quasi Monte Carlo polymerization re-sampling
particle filter algorithm is proposed in this paper, and which is applied to the airborne passive
location. Weighted aggregation of similar particles in the discrete space is carried out, so as to
make the particles in a reasonable space distribution, and also effectively suppress the degradation
of the particles. Then the Quasi Monte Carlo technique is used to move the heavily sampled
particles to the high likelihood region to optimize the distribution characteristics of the particles,
and improve the accuracy of the filter. Finally, the simulation analysis of several algorithms is
carried out in three conditions. The results show that the application of the Quasi Monte Carlo
polymerization re-sampling particle filter algorithm in airborne passive location can improve the
filtering precision and positioning efficiency.
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1. Introduction

In the information warfare, because the airborne location radar has many prob-
lems [1], the research scholars have to search for the new airborne positioning tech-
nology at home and abroad, so that the passive location technology has been widely
concerned [2]. Passive location technology has very important significance for the
modern information warfare because of its low weight, wide range of positioning and
strong concealment [3]. Passive tracking algorithm has become the core of passive
location technology in recent years, because it cannot get the distance between the
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observation station and the signal transmitting point, so it needs to calculate the
distance by the positioning algorithm [4]. In general, the distance measurement
formula of the single observer passive location system is a very difficult nonlinear
equation, at the same time, it has a large error in the position information, based
on this, which must be processed by the observation equation of the passive loca-
tion system. Compared with the traditional positioning and tracking algorithm, the
single observer passive location is more difficult to be processed because of its own
characteristics [5]. Because the observability performance of the system is weak, the
equation is difficult to be solved, and the error is big, it also can appear the filter
efficiency low and other problems, so the passive tracking algorithm has become the
core of the research of the airborne positioning technology in recent years.

In recent years, the particle filter (PF) algorithm is applied to the nonlinear fil-
tering problem, the probability distribution of random variables is calculated by a
large number of random samples and their corresponding assignment. However, due
to the poor performance of the airborne passive location, the initial errors and the
co-variance of which are large. The standard particle filter algorithm is prone to
degradation and impoverishment and other issues, which will lead to the poor fil-
tering performance. In this regard, Klaas proposed a higher efficiency of the Gauss
particle filter algorithm [6]. The core idea of which is to make the post probability
distribution of airborne location state information approach to the Gauss distribu-
tion, and take the Quasi Monte Carlo integral to reduce the mean and co-variance of
the sample. Gauss particle filter algorithm has no re-sampling, so the filter perfor-
mance can be improved. However, in the use of single station passive location system,
the noise is small, so it is easy to make data samples appear aggregation condition,
so as to reduce the accuracy of positioning estimation. Based on this, Moradkhani
proposed the Quasi Monte Carlo (QMC) algorithm and the Quasi Monte Carlo Goss
particle filter (QMCGPF) algorithm, and the estimation accuracy could be obtained
by using the Monte Carlo samples randomly generated in the sample space [7]. But
because the operation rate is proportional to the number of the sample particles, so
the speed of the operation of the system will be greatly decreased with the increase
of the number of the samples.

Based on this, a method of Quasi Monte Carlo polymerization re-sampling par-
ticle filter algorithm is proposed in this paper, and which is applied to the airborne
passive location. Weighted aggregation of similar particles in the discrete space is
carried out, so that the particles are in a reasonable space distribution, so as to
effectively suppress the degradation of the particles; The Quasi Monte Carlo tech-
nique is used to move the heavily sampled particles into the high likelihood region
to optimize the distribution characteristics of the particles, so as to improve the
accuracy of the filter. Finally, a variety of algorithms are simulated and analyzed.

2. State of the art

The airborne passive location system is quite different from the ground fixed po-
sition system, because its measurement is carried out under the coordinate system
of the body, so it is necessary to convert the data measured by the airborne posi-
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tioning system to the data of the ground fixed coordinate system. First of all, the
body coordinate system is defined, it is assumed that the body centroid is the origin
of the airborne passive location coordinate system, and the flight direction of the
aircraft is the Y ′ axis, the direction which is perpendicular to the direction of the
Y ′ axis is the Z ′ axis. Transformation of the coordinate system is shown in Fig. 1.

Fig. 1. Observer and object in three-dimensional geometry

The state vector and attitude information of the body at time Tk can be obtained
by GPS and airborne navigation equipment. The relative state vector of the airborne
passive location and the passive location in the body coordinate system is

X0k = [xTk, yTk, zTk, ẋTk, ẏTk, żTk]
T
.

Here, xTk, yTk, zTk is the target position in theXY Z coordinate system and ẋTk, ẏTk,
żTk is the target position in the X ′Y ′Z ′ coordinate system.

Based on the above assumptions, the coordinate conversion of the position vector
can be considered as:[

x
′

k, y
′

k, z
′

k

]T
= Ak [xTk − x0k, yTk − y0k, −z0k]

T
. (1)

Here, Ak represents the matrix of the ground coordinate system and body coordinate
system transformation [8], and x0k, y0k, z0k is the position of point 0′ in the XY Z
coordinate system. Vector

[
x

′

k, y
′

k, z
′

k

]
is speed. In the same way, the speed loss

between the two systems can be expressed in the formula (1).
The state equation and observation equation are established in the following way:

XTk+1 = f (XTk, wk) = ΦkXTk +Gkwk , (2)
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Zk =
[
βk, εk, β̇k, ε̇k, ḟdk

]T
+ vk . (3)

In the equation, the state transition matrix is represented by

Φk =

[
I2 TI2
0 I2

]
, Gk =

[
T 2I2/2
TI2

]
.

The process noise is expressed by wk, and the observation noise is expressed
by vk. The process noise and observation noise are independent of each other,
and the Gauss noise is of zero mean; E

[
wi, w

T
j

]
= Okδij , E

[
vi, v

T
j

]
= Rkδij , the

measurement period is expressed by T , and the 2-order unit matrix is expressed by
I2. Symbols XTk+1 and XTk are k + 1th and kth time state vectors, and Zk is kth
time observation vector. Symbols βk and εk are target bear in the XY Z coordinates
in the kth time while β̇k and ε̇k represent target bear in the X ′Y ′Z ′ coordinates in
the kth time. Finally, ḟdk is frequency offset in k − 1th and kth time instants.

Based on the principles of particle kinematics, the following equations are used
to express the observed variables:

βk = arctan
(
x

′

k/y
′

k

)
, (4)

εk = arctan

(
z

′

k/
(
x

′2
k + y

′2
k

)1/2

,

)
(5)
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(
y

′
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′

kẏ
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k

)
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′2
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k

)
, (6)
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′2
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′2
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′2
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)]
. ,

(7)

where ẋ
′

k, ẏ
′

k, ż
′

k are changes of the velocity components. When a relative radial
velocity appears between the observation station and the aircraft radio frequency,
the Doppler frequency will be received by the observation station f = fT + fd. The
value of fT (frequency of aircraft RF) is set to a constant amount, then fd is used
to represent the Doppler frequency, and the formula is as follows

fdk = −fT (ẋ
′

k sinβk cos εk + ẏ
′

k cosβk cos εk +

+ ż
′

k sin εk)/c .
(8)

The Doppler frequency change rate of the can be obtained:

ḟdk = −fT (ẍ
′

k sinβk cos εk + ÿ
′

k cosβk cos εk +

+ z̈
′

k sin εk + rk

(
β̇k cos εk

)2

+ rkε̇
2
k)/c .

(9)

In this expression, symbol c represents the propagation velocity of electromag-
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netic wave, while ẍ
′

k, ÿ
′

k, z̈
′

k is the vector of acceleration.
When a relatively large maneuver is generated from the observation station and

the aircraft, the acceleration term in (9) can be ignored, so that

ḟdk = −fT
[
rk

(
β̇k cos εk

)2

+ rkε̇
2
k

]
/c . (10)

3. METHODOLOGY

3.1. Thompson-Taylor algorithm

As a new algorithm, Thompson-Taylor algorithm is mainly used in the generation
of random samples [9]. The basic principle of the algorithm is to deal with the
random number of samples which are similar to that of m samples by centralized
processing, and then to get a new random sample of the m samples. Its advantage
consists in the fact that it will not be too dependent on the distribution of the state
space of the sample, which is not necessary to be similar to Gauss approximation.
Its process is as follows:

Step one: a random sample xi is extracted from the sample set
{
xi
}N
i=1

, and
the adjacent m samples

{
xi1, x

i
2, · · · , xim

}
(including xi) are obtained by smooth

operation, and the average value of the m samples is x̄i.
Step two: a random number set is obtained:

{ui}mi=1 ∼ U

(
1

m
−
√

3m− 3

m2
,

1

m
+

√
3m− 3

m2

)
. (11)

Step three: new random sample is generated:

zi = x̄i + ui
(
xik − x̄i

)
, k = 1, 2, · · · ,m . (12)

Thompson-Taylor algorithm can generate a more uniform random sample distri-
bution, and keep the the same mean and variance of the sample set, although it is
not for the particle filter algorithm, but the method can be used to make the particle
filter sample diversity to be met.

3.2. Quasi Monte Carlo re-sampling particle filter

Because the operation of the Quasi Monte Carlo Goss particle filter algorithm
has a positive correlation with the number of Quasi Monte Carlo samples [10], so the
decrease of the number of Quasi Monte Carlo samples can improve the computing
speed, so as to obtain a new algorithm, that is, the Quasi Monte Carlo aggregated
re-sampling particle filter algorithm [11]. Its core idea is: the weighted aggregation
of the similar particles in the state space is carried out, the boundary conditions is
set as the average forecast in the space of the center of the polymer particle, and the
Quasi Monte Carlo re-sampling is carried out in the space. In this process, the Quasi
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Monte Carlo sampling is carried out in the neighborhood of the aggregated particles,
and the steps of the Quasi Monte Carlo re-sampling particle filter prediction sampling
space are omitted, so that the diversity of the sample is improved, and the filtering
precision and the positioning accuracy are improved, too [12].

Initialization: The initial relative distance r̂0 = −λḟd0/
(
ε̇2

0 + β̇2
0 cos2 ε0

)
ob-

tained by the initial observation is combined with the azimuth angle and pitching
angle to obtain the observed object. Based on the estimation

[
x̂

′

0, ŷ
′

0, ẑ
′

0

]
of the

position vector of the body coordinate system and the X̂O0, the two-dimensional

position vector estimation
[
x̂

′

T0, ŷ
′

T0

]T
of the observed object in the ground coordi-

nate system is obtained, so as to get the initial state X̂T0, the initial error co-variance
matrix P̂0 is calculated based on the initial observation error.

Quasi Monte Carlo sampling: Based on the example of the HALTON sequence,
the method that can generate the Gauss point is given, so as to generate N Gauss
points which obey the P (xk−1):{

x
(i)
k−1

}N
i=1
∼ N

(
xk−1; x̄k−1, P̂k−1

)
. (13)

The particle set
{
x

(i)
k|k−1

}N
i=1

is predicted at the k moments according to the state

equation,and the mean and co-variance of the
{
x

(i)
k|k−1

}N
i=1

are estimated, that is:

x̄k|k−1 =
1

N

N∑
i=1

x
(i)
k|k−1 , (14)

P̂k|k−1 =
1

N

N∑
i=1

(
x

(i)
k|k−1 − x̄k|k−1

)(
x

(i)
k|k−1 − x

k|k−1
)T

. (15)

According to the importance density q (xk |z1,k ), the quasi Gauss sample
{
x

(i)
k

}N
i=1

is extracted by the Quasi Monte Carlo sampling.
According to the observed value Zk, the weight value ω(i)

k of each particle is
calculated and its normalization processing is carried out, that is

ω
(i)
k = P

(
zk

∣∣∣x(i)
k

)
N
(
x

(i)
k ; x̄k|k−1, P̂k|k−1

)
/q (xk |z1,k )ω

(i)
k = ω

(i)
k /

N∑
i=1

ω
(i)
k . (16)

The state of the target and the posterior distribution after the K moments are
estimated:

x̄k =

N∑
i=1

ω
(i)
k x

(i)
k , P̂k =

N∑
i=1

ω
(i)
k

(
x

(i)
k − x̄k

)(
x

(i)
k − x̄k

)T

. (17)
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Particle aggregation: the number of particles #N2
ki, i = 1, 2, · · · ,m in each grid

set #G2
ki is recorded, among them

#N2
k1 + #N2

k2 + · · ·+ #N2
km = N.

. Then the particles in each grid are focused, so as to get the m polymer particles{(
xtik , ω

ti
k

)}m
i=1

.
Quasi Monte Carlo particle aggregation re-sampling: A four dimensional random

Quasi Monte Carlo sequence {ui}N−mi=1 is truncated by the particle, so as to get m
sub-sequences with the length of #N2

ki − 1, then:

xtik (j) = xtik +
(
xtik − x̄k

)
× uj . (18)

Based on the above formula, #N2
ki − 1 Quasi Monte Carlo sampling particle{(

xtik (j) , ωtik (j)
)}#N2

ki−1

j=1
is obtained. Finally, the average weight of all the particles

in the grid is solved, and the formula is as follows:

ωtik (j) = ωtik /#N
2
ki . (19)

4. Result analysis and discussion

In this paper, three sets of experiments are set up, under different observation
conditions of the Quasi Monte Carlo re-sampling particle filter algorithm. The com-
parison of the performance of the particle filter algorithm, Gauss particle filter al-
gorithm and the Quasi Monte Carlo Goss particle filter algorithm is carried out.
Among them, the particle filter algorithm uses re-sampling, the simulation param-
eters are set as follows: it is assumed that in the ground coordinates, the starting
position of the machine is (0,2.0 km), the navigation speed of the aircraft is (20m/s,
0, 0), the accuracy of airborne equipment is σx0

= σy0 = 20m, σz0 = 8m; the initial
position of the signal receiving station is (160 km, 160 km), the absolute velocity is
(-15m/s, 15m/s). The measurement accuracy of the three groups is summarized in
the following table:

experiment 1 σβ = σε = 1.64 ×
10−3 rad

σḟd
=

1Hz
σβ̇ = σε̇ = 0.1 ×
10−3 rad/s

experiment 2 σβ = σε = 28.4 ×
10−3 rad

σḟd
=

2Hz
σβ̇ = σε̇ = 0.2 ×
10−3 rad/s

experiment 3 σβ = σε = 35.7 ×
10−3 rad

σḟd
=

4Hz
σβ̇ = σε̇ = 0.3 ×
10−3 rad/s

In the three groups of experiments, σfT = 10MHz, the sample period is 1 s, the
number of observations is 100, and the number of selected particles N = 400. The
performance index of each algorithm adopts the relative distance error Err, and the
degradation degree of the particle is expressed by the mean effective particle number
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Neff , that is:

Err =

(
x2

ture − x̂
)2

+
(
y2

ture − ŷ
)2

(x2
ture + y2

ture)
2 × 100 % , (20)

Neff,k = 1/

N∑
i=1

(
ωik
)2
, Neff =

1

100

100∑
k=1

Neff,k . (21)

The simulation results are shown in Figs. 2, 3 and 4.

Fig. 2. Comparison of positioning accuracy in different observation accuracy

Fig. 3. Comparison of single operation time in different observation accuracy

From Figs. 2–4, it can be drawn that the observation accuracy is proportional
to the positioning accuracy of the algorithm. The positioning accuracy of particle
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Fig. 4. Comparison of average effective number of particles in different observation
accuracy

filter algorithm is approximate to a certain value, and will continue to maintain
convergence. In addition, from the number of the average effective particle, it can
seen that the particle filter algorithm exhibits serious particle degeneracy and im-
poverishment, while the Gauss particle filtering algorithm does not exhibit the phe-
nomenon of impoverishment because of the Gauss distribution. The main reason is
that Gauss’s assumption is established, at the same time, the Gauss particle filter
algorithm obtains the samples from the continuous distribution of the state space,
and the Gauss interference of each sample is also carried out, so as to increase the
diversity of particles, and avoid the emergence of the phenomenon of dilution, which
shows that Gaussian particle filter algorithm is obviously superior to the particle
filter algorithm. Quasi Monte Carlo Goss particle filter algorithm uses the Quasi
Monte Carlo sampling on the basis of the Gaussian particle filter algorithm, so that
the sample distribution in the state space is more uniform, so as to further improve
the precision of estimation. Therefore, under the same conditions, the accuracy of
the Quasi Monte Carlo Goss particle filter algorithm is much higher than that of
the Gauss particle filter algorithm. In addition, the Quasi Monte Carl Goss particle
filter algorithm improves the positioning accuracy, and the operation time of this
algorithm is significantly improved.

5. Conclusion

In this paper, Quasi Monte Carlo aggregated re-sampling particle filter algo-
rithm based on the airborne passive location method is proposed, and the following
conclusions are obtained:

Through the simulation and analysis of a variety of filtering algorithms, Gaussian
particle filter algorithm cannot appear phenomenon of impoverishment because of
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its Gaussian distribution, the main reason is that the Gauss particle filter algorithm
carries out the Gauss interference for each sample, so as to increase the diversity
of particles, and avoid the emergence of the phenomenon of dilution, so it can be
known that the Gauss particle filter algorithm is significantly better than the particle
filter algorithm. At the same time, Quasi Monte Carlo Goss particle filter algorithm
uses the Quasi Monte Carlo sampling on the basis of the Gaussian particle filter
algorithm, so that the sample distribution of the state space is more uniform, so as
to further improve the precision of estimation.
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